25900783	Reg.No :	
	Name :	

MAHATMA GANDHI UNIVERSITY, KOTTAYAM MGU-BCA (HONOURS) REGULAR /IMPROVEMENT/ REAPPEARANCE EXAMINATION NOVEMBER 2025 FIRST SEMESTER

Core Course (CC) - MG1CCRBCA100 - DIGITAL FUNDAMENTALS

(2024 ADMISSION ONWARDS)

Duration: 2 Hours Maximum Marks: 70

Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

Students should attempt at least one question from each course outcome to enhance their overall outcome attainability.

Part A

Very Short Answer Questions

Answer All Questions

Each Question carries 2 marks

1.	Explain the process of converting a decimal number to binary.	[U] / [CO1]
2.	Explain the concept of overflow in binary addition.	[U] / [CO1]
3.	Convert the expression into sum-of-product (SOP) form-(A+B)(A+B+C).	[A] / [CO2]
4.	Simplify the expression $f = A + B[AC + (B + C') D]$ using basic laws of Boolean algebra.	[A] / [CO2]
5.	What is the use of a de-multiplexer?	[K] / [CO3]
6.	Draw the block diagram of a combinational logic circuit.	[U] / [CO3]
7.	Define sequential circuits and explain their significance.	[U] / [CO4]
8.	Explain the concept of toggling in a JK flip-flop.	[U] / [CO4]
9.	Convert the binary number 101011 to octal.	[A] / [CO1]

10. What is the primary difference between a half adder and a full adder?	[U] / [CO3]	
	[10x2 = 20]	
Part B		
Short Answer Questions		
Answer any 5 out of 7 Questions		
Each Question carries 6 marks		
11. Convert the decimal number 357 to its BCD representation using the 8421 code. Show each step of the conversion process.	[A] / [CO1]	
12. Simplify the expression $F(x,y,z)=\sum (0,6)$ and implement with NOR gate.	[A] / [CO2]	
13. Explain how a decoder is used for memory address selection in computer systems.	[U] / [CO3]	
14. Discuss the characteristics and use of a D flip-flop.	[U] / [CO4]	
15. Compare and contrast the binary, octal, and hexadecimal number systems. Discuss the benefits of each in computing.	[U] / [CO1]	
16. Apply De Morgan's theorems to each of the following expressions (i) [(A + B + C) D]' (ii) (ABC + DEF)' (iii) (AB'+ C'D + EF)'.	[A] / [CO2]	
17. Compare the behaviour of positive-edge-triggered and negative-edge-triggered flip-flops based on a timing diagram.	[An] / [CO4]	
	[5x6 = 30]	
Part C		
Essay Questions		
Answer any 2 out of 3 Questions		
Each Question carries 10 marks		
18. Simplify the Boolean function using K-Map: $F(w,x,y,z)=\Sigma(1,3,4,5,6,9,12,13).$	[A] / [CO2]	
19. Design an 8×1 multiplexer using 4×1 and 2×1 multiplexer.	[A] / [CO3]	
20. Describe the operation of a 4-bit serial-in parallel-out (SIPO) shift register. Include a timing diagram to show how data is shifted in and read out.	[U] / [CO4]	
	[2x10 = 20]	